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Gaseous, ionized polycyclic aromatic hydrocarbons (PAHs) are thought to be responsible for a very common

family of interstellar infrared emission bands. Unfortunately, very little infrared spectroscopic data are available

on ionized PAHs. Here we present the near- and mid-infrared spectra of the polyacene cations anthracene,

tetracene, and pentacene. We also report the vibrational frequencies and relative intensities of the pentacene

anion. The cation bands corresponding to the CC modes are typically about 10-20 times more intense than

those of the CH out-of-plane bending vibrations. For the cations the CC stretching and CH in-plane bending

modes give rise to bands which are an order of magnitude stronger than for the neutral species, and the CH

out-of-plane bends produce bands which are 3-20 times weaker than in the neutral species. This behavior

is similar to that found for most other PAH cations. The most intense PAH cation bands fall within the

envelopes of the most intense interstellar features. The strongest absorptions in the polyacenes anthracene,

tetracene, and pentacene tend to group around 1400 cm -_ (between about 1340 and 1500 cm -_) and near

1 i 80 cm- _, regions of only moderate interstellar emission. These very strong polyacene bands tend to fall

in gaps in the spectra of the other PAH cations studied to date suggesting that while PAHs with polyacene

structures may contribute to specific regions of the interstellar emission spectra, they are not dominant members

of the interstellar PAH family.

1. Introduction

During the past decade evidence has been mounting that

polycyclic aromatic hydrocarbons (PAHs) are important com-

ponents of the interstellar medium.t Under the harsh conditions

in the interstellar emission zones, most PAHs are expected to

be positively charged. For this reason we have undertaken a

study of the infrared spectroscopic properties of matrix-isolated

PAH cations. While the primary motivation for this research

is to investigate the role of PAHs in the interstellar medium,

the results are of general interest. PAH cations are considered

to be important intermediates in combustion, 2 and some PAH

intermediates and primary reaction products are carcinogenic. 3

Ionized 4 and neutral s PAH molecules have been proposed as

the carriers of a very common family of interstellar infrared

fluorescence bands. The ubiquity of this spectrum suggests that

free molecular PAHs are common throughout interstellar space,

and the intensity of the bands indicates that they are as abundant

as the most abundant polyatomic interstellar molecules known.

As much as 30-40% of the radiant energy from some of these

sources is emitted in this family of bands. Reviews of this field

can be found in ref 1. While the interstellar PAH hypothesis

rests on the general resemblance of the interstellar emission

spectra to the absorption spectra of aromatic hydrocarbons, the

available data are mainly for neutral PAils suspended in salt

pellets 6 or organic solvents. 7 Under such conditions interactions

with the surrounding media and with other PAIl molecules

(clusters) strongly perturb the transitions, s While this body of

information has been invaluable in establishing the interstellar

PAH hypothesis, there are important differences in detail

between the laboratory' and interstellar spectra. Differences in

band position and relative band intensities, as well as the fact

that most interstellar PAHs are expected to be ionized in the
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regions where they emit, have hindered proper testing of the

hypothesis and the possible exploitation of PAHs as probes of

the interstellar medium. Thus, the infrared spectra of neutral,

isolated PAHs and of ionized, isolated PAHs are of fundamental

importance to further progress in this field.

In response to this need for reliable, quantitative, infrared

spectroscopic data on neutral and ionized PAHs under conditions

relevant to astrophysical environments, we have initiated a

systematic program to obtain this information. There are many

PAHs which one can study. The PAHs studied at the NASA

Ames Research Center have been selected for the following

reasons. First, as little is known about the infrared properties

of PAH cations, the smallest members of the PAIl family were

chosen to minimize the number of fundamental vibrations and

spectral complexity. Second, as this work is motivated by the

astrophysical question, the PAHs most likely to be important

in this context were given preference. Third, as the effects of

structure and size on the infrared spectra of simple PAH cations

are not known, related PAHs with limited, well-defined

structural differences have been studied together. Finally, as

size increases, PAH samples tend to become increasingly

refractory and increasingly difficult and expensive to obtain.

Thus, in the interest of experimental practicality, smaller PAHs

were the logical starting point. Small PAHs are also relevant

from the astrophysical point of view. Molecules containing 20-

30 carbon atoms are thought to dominate the interstellar

fluorescence at the shortest wavelengths) a. 4

In paper 1 of this series, our experimental approach and the

4000-200 cm -z spectra of the smallest PAH, naphthalene

(CioHs), and its fully deuterated analog (CIoDs) 9 are presented.

Paper 2 reports the near- and mid-infrared spectral properties

of the thermodynamically most favored PAHs containing

between 6 and 24 carbon atoms (phenanthrene, pyrene, benzo-

[e]pyrene, benzo[gh0perylene, and coronene).l° Here we focus

on the properties of several members of the polyacene family,

comparing the spectra, whenever possible, with previously
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published data. 9.1L12 This phase of the program is designed to

investigate frequency and intensity trends which may be

associated with a specific geometry, in this case a linear chain

of hexagonal aromatic moieties of varying length. In subsequent

papers in this series other aspects of PAH cation structure will

be explored. The neutral spectra of these PAHs will also be

presented elsewhere, t3._4 The goal is to understand how

structure and size influence the infrared spectra of small PAHs

in their neutral and cationic forms.

Efforts to provide this type of information are now underway

at several institutions. Defrees and Miller theoretically predicted

surprising relative infrared band strength differences between

the neutral and ionized forms of the PAHs naphthalene and

anthracene, tsa Subsequently, Defrees et al.ISb and Pauzat et al.16

greatly expanded this work. Prof. Vala and co-workers at the

University of Florida have published the infrared spectroscopic

properties for cations of the matrix isolated PAHs naphthalene,

anthracene, pyrene, perylene, and coronene, tL12.t7-_8 and

d'Hendecourt et al. have reported the spectrum of the coronene
cation. 19

This paper is laid out as follows. The experimental technique

is briefly summarized in section II. In section HI criteria used

to identify the cation bands are described. Section IV presents

the near- and mid-infrared spectra of the anthracene and

tetracene cations and of the pentacene anion and cation. These

results are also discussed in section IV, where the spectra are

compared to that of naphthalene and trends are pointed out.

Finally, the astrophysical implications are described in section
V.

II. Experimental Section

Individual PAH molecules are isolated in an argon matrix

where they are photoionized and probed spectroscopically. The

techniques will be described only briefly as our experimental

procedure has been presented in detail previously. 9._° Matrix

samples were deposited on a 10 K Csl window suspended in

an ultrahigh-vacuum chamber (p _ 10 -s mTorr). This chamber

is externally supported and suspended in the sample compart-

ment of a Fourier transform infrared spectrometer. Samples

were prepared by codeposition of a gaseous PAH with an

overabundance of argon. After sample deposition was complete,

the CsI cold window was rotated to face the beam of an infrared

spectrometer and a prephotolysis spectrum recorded. The

sample was then rotated to face a microwave-powered discharge

lamp for photolysis. After exposure to the ionizing radiation,

the postphotolysis spectrum was recorded. Comparison of this

spectrum with the neutral spectrum permitted identification of

the ion features which appeared upon photolysis.

For deposition, PAH samples were placed in resistively

heated, _/, in. diameter, Pyrex tubes mounted on the sample

chamber. Tube temperature was monitored using a chromel/

alumel thermocouple mounted on the exterior of the tube with

aluminum metal tape. Such an arrangement should potentially

be useful at temperatures as high as 316 °C (the failure

temperature of the Viton O-ring) and with samples as small as

a few milligrams. Argon was admitted through a second port

at a position 45 ° from the first in such a way that the two
"streams" coalesced before the surface of the cold window. The

deposition tubes ended between 2 and 4 cm from the cold

window. During deposition this window was maintained at a

position intermediate to the two deposition ports. The argon

deposition line was liquid nitrogen trapped to minimize con-

tamination. Sample quality was found to be optimal for PAIl

vapor pressures in the range from l0 to 30 mTorr. Higher vapor

pressures required higher argon deposition rates which exceeded
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the thermal conductivity of the CsI window, warming the matrix.

The "annealing" which resulted produced a matrix which was

highly scattering at short wavelengths, crippling the Ly-o,

photoionization efficiency and the signal-to-noise ratio of the

near-IR spectrum. Conversely, lower vapor pressures required

longer deposition times, which necessarily increased the con-

taminants in the matrix and, in turn, reduced the ionization

efficiency. Thermochemical data 2° were used to establish the

approximate temperature necessary for each PAH investigated.

Optimum tube temperatures were as follows: anthracene, 33

°C; tetracene, 109 °C; and pentacene, 203 °C. The optimal

argon flow rate was estimated to be between 0.5 and 1.0 mmoi/

h.

PAH/Ar matrices were photoionized using the Lyman-ct

emission from a microwave-powered discharge lamp using a

10% H2 in He gas mixture at _75 mTorr. A MgF2 vacuum

window allowed transmission of this radiation to the sample.

Those experiments which incorporated the electron acceptor

CCh in the matrix necessitated the lower energy photolysis I°

generated by a discharge in pure H2 gas at "--150 mTorr. This

optimized the broad molecular hydrogen emission band centered

around 160 run (7.77 eV) with respect to the Ly-ct line. A Ca.F2

vacuum window (cutoff 2 _ 150 nm) served as a filter to

exclude the residual Ly-ct radiation. Ion yield upper limits

ranging from 5% to 10% are typically realized with this

technique. The upper limits of the yields for the spectra

presented here were as follows: anthracene, 5.5%; tetracene.

11%; and pentacene, 12%.

All spectra reported here were measured at 0.5 cm -_

resolution. This resolution is critical for detecting ion bands

which fall near the position of a neutral band. Spectra were

typically generated through coaddition of five blocks of 200

scans, a number which optimized both the signal-to-noise ratio

and time requirements of each experiment. Mid-infrared spectra

(7000-500 cm -1) were collected using an MCT-B detector/

K.Br beam splitter combination. Near-infrared spectra (I 5 100-

8800 cm-)) were collected using a silicon detector/quartz beam

splitter combination. Conversion between the two spectral

regions allowed measurement of both electronic and vibrational

band intensities from a single matrix.

Tetracene (Aldrich Chemical Co., 98+% purity), pentacene

(Aldrich Chermcal Co., 98+% purity), and argon (Matheson

prepurified, 99.998% minimum) were used without further

purification.

m. Cation Band Identification

As in previous studies of PAH cation spectra, three criteria

must be met before a photoproduct band is attributed to a

particular PAH cation. First, the bands must only appear when

the associated neutral PAH is present in the matrix. A number

of control experiments have been carried out to ensure that this

is the case. Second, the bands attributed to the cation must be

markedly enhanced when CC14, an electron acceptor, is present

in the matrix at a concentration of 1 part in 200. This behavior

establishes that the bands arise from a positive ion. This effect

is demonstrated in Figure 1, which shows part of the tetracene

cation spectrum generated both with and without CCh in the

matrix. Third, all the bands attributed to the cation must evolve

in a similar fashion. Spectra collected as a function of photolysis

time show that all of the bands assigned to the respective cation

grow and decline together in a manner distinct from other

features produced by photolysis. These band correlation plots

are presented below along with the appropriate spectroscopic

data. In general, the intensities of the bands corresponding to

the PAH cation peak after 4-8 min of photolysis and then
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Figure 1. Enhancement of the tetracene cation yield with the addition
of CCI_ to the matrix. The 1420-1320 cm -_ region of the spectrum of
matrix-isolated tetracene (a) before photolysis, (b) after 8 rain of in-

situ photolysis, and (c) after 8 rain of in-situ photolysis of a matrix
containing CCI_ at the level of 1 part in 200. Tetracene cation bands
are labeled.

remain essentially constant or fall off slightly upon further

photolysis. This behavior is similar to that found for the other

PAH cations. 9' :0 Conversely the bands of other photoproducts

tend to increase steadily with photolysis time. Other photo-

product bands were not common, typically numbering 2-4 in

each case. Most common were the 904 cm -I HAt2 ÷ and 1589

cm-I bands. These appeared moderately strong in a number

of experiments. Other weak photoproduct bands at 1388 and

1104 cm-t(HO2 +) and at 1039 cm -1 (03) appeared in several

experiments, as did bands attributable to CO2 and possibly CO.

IV. Results

The positions and relative intensities of the mid-infrared

cation bands for the polyacenes anthracene (CI4H_0÷), tetracene

(CisHi2+), and pentacene (C22Hu +) are compared with those

of naphthalene (CIoH8 +) in Table 1. These spectra are discussed

below. Only those regions of the spectrum where cation bands

appear are shown. The spectrum of the pentacene anion is also

discussed here. The complete spectrum of the neutral isolated

PAHs will be given in ref 13. The spectral properties of the

naphthalene and anthracene cations, the first two members of

the series, have also been presented elsewhere. 9. 11.12

A. Mid-Infrared Spectroscopy. As is the case with
previous PAH cations studied, no new features were found in

the CH stretching region between 3200 and 2900 cm -_ for the

cations presented here. Theoretical calculations have predicted

that these modes are suppressed in the cations. _Sa.b.16 The

continuing failure to observe any CH stretching features

whatsoever attributable to a cation is certainly consistent with

this prediction. It is likely that the presumably weal_er cation

bands are screened by the corresponding bands of the more

abundant neutral parent.

The Anthracene Cation, C zJ-l ;o+. The mid-infrared spectrum

of the anthracene cation is shown in Figure 2. The band

frequencies and relative intensities are listed in Table 1. The

evolution of the bands assigned to the cation with Ly-ct

photolysis is plotted in Figure 3. The bands reported here

compare favorably with those reported previously by Szczepan-
ski et al. _2 We have detected additional bands attributable to

the anthracene cation. They lie at 748.3, 1183.3, 1314.6, 1352.6,

1364.4, 1406.1, 1430.2, and 1586.4 cm -_. Szczepanski et al.

Hudgins and Allamandola

TABLE 1: Infrared Frequencies and Relative Intensities for
the Polyacene Cations through Pentacene

naphthalene anthracene tetracene pentacene

v (cm -I) lrel v (Cm -I) -/tel "t' (cm -/) lrel V (cm -1) lr:l

758.7 0.27
1023.2 0.054
1214.9 0.2
1218.0 1.0

1400.9 0.044
1518.8 0.1

1525.7 0.29

748.3 0.263 929.4 0.0459 740.8 0.00304
912.0 0.0930 1155.8 0.0116 748.5 0.0536

1183.3 0.0142 1178.5 0.437 862.0 0.0159
1188.6 0.700 1302.9 0.00943 933.9 0.0613
1290.4 0.0580 1331.8 0.0575 1149.9 0.0327
1314.6 0.0595 1349.1 0.328 1171.6 0.00284
1341.0 1.00 1358.4 1.00 1174.7 0.415

1352.6 0.307 1371.2 0.0132 1232.8 0.313
1364.4 0.0383 1402.1 0.0384 1306.0 0.0378
1406.1 0.0149 1406.4 0.0690 1339.3 0.0392
1409.5 0.105 1409.6 0.180 1361.7 0.321
1418.4 0.861 1414.4 0.0888 1365.6 0.141
1430.2 0.0143 1422.5 0.0270 1384.0 0.0398
1456.5 0.0733 1478.3 0.531 1395.5 1.00
1539.9 0.152 1488.0 0.129 1399.0 0.00582
1586.4 0.138 1543.3 0.229 1417.8 0.331

t604.7 0.0172 1436.0 0.00754
1448.8 0.0199
1487.5 0.266
1495.5 0.0571
1504.7 0.0895
1531.1 0.00684
1534.3 0.00661

report bands at 1034 and 432 cm -_, which we did not detect.

While the 432 cm -_ feature was out of the range of our

instrument, that at 1034 cm -_ was reported as moderately strong
and should have been detected as the neutral molecule does

not possess absorptions which screen this area. We note that

we have observed an O3 impurity band in several of our

experiments close to this frequency.

The mid-infrared spectrum of the anthracene cation is

dominated by the three strong bands at 1418.4, 1341, and 1188.6

cm -I. The first has been assigned to a CC stretch, while the

latter two have been attributed to in-plane CH bends by

Szczepanski et al. t2 With an intensity of 0.70 relative to that

of the most intense band in the cation spectrum, the 1188.6

cm-_ band is particularly notable. The cations of the thermo-

dynamically most favored PAHs show, if anything, only very

weak ion features in this region (relative intensity typically

_<0.03). Such a marked difference is indicative that cation

structure has a strong influence on the intensity of the CH in-

plane bending vibration.

The bands at 912.0 and 748.3 cm -1 are likely due to CH

out-of-plane bends. These correspond nicely with the CH out-

of-plane bending frequencies predicted by Szczepanski et al. at

920 and 748 cm -I. Anthracene has two rings with four adjacent

H atoms and one with two nonadjacent H atoms. The 912.0

cm-I band falls just beyond the high frequency limit of the

normal range expected for nonadjacent H atoms, and the 748.3

cm -I band falls right in the range expected for neutral PAHs

with four adjacent H atoms on a ring.

By an analysis similar to that set forth previously for the

cations of the thermodynamically most favored series of PAHs,_°

we can estimate the intensity of the CH out-of-plane bending

modes in the anthracene cation relative to those of the neutral

molecule. By direct measurement of the attenuation of the

bands of neutral anthracene upon photolysis, we calculate an

upper limit to the percent ionization ((N+/N °) × 100) of 5.5%.

Therefore, if the CH out-of-plane bending modes in the

anthracene cation were equal in intensity to those in the neutral

molecule, we would expect these bands to appear in the

spectrum with an intensity 5.5% that of the prephotolysis neutral

bands. In fact, we find that the intensities of the 912.0 and
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Figure 2. Mid-infrared spectrum of the anthracene cation isolated in an argon matrix at 10 K: (a) before photolysis: (b) after 8 min in-situ
photolysis. The cation bands are labeled with their positions.
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748.3 cm-_ CH out-of-plane cation bands are reduced from this

projected value by factors of 5.5 and 3, respectively.

The Tetracene Catwn, CtsH s2+. The mid-infrared spectrum

of the tetracene cation is shown in Figure 4. The band

frequencies and relative intensities are listed in Table 1. The

evolution of the bands assigned to the cation with Ly-ct

photolysis is plotted in Figure 5. As with several ions previously
studied, this band correlation, one of the criteria of ion

assignment, is looser for the weaker bands whose signal-to-

noise ratios lie in the 2-3 range. Nonetheless, their overall

behavior of a sharp rise and leveling off warrants their

assignment to the cation.

Most of the bands attributed to the tetracene ion fall between

about 1600 and 1100 cm -t. Thus, they are assigned principally

to CC stretching and CH in-plane bending modes. Again,

notable is the presence of an intense feature in the vicinity if

1180 cm -1. This band, falling at 1178.5 cm -_, has a relative

intensity of _0.44. The presence of such a feature in both the

anthracene and tetracene cation spectra indicates that the linear

geomelry of the molecules favors the intensity of this vibrational

mode. There are undoubtedly other cation bands which are

screened by neutral features. Due to unavoidable confusion

from H:O contamination in the matrix, it is difficult to ascertain

whether or not all of the tetracene cation bands which fall in

the 1600 cm -t region have been detected. Only one new band

(929 cm -_) falls close to the region associated with CH out-

of-plane bending vibrations (about 900 and 600 cm-l).

The cation frequency spectrum, with most bands between

1600 and 1200 cm -_, does not resemble that of the neutral

species which has bands evenly distributed between 1700 and
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700 cm- _. The intensity pattern is also remarkably different, a

characteristic for all PAH cations studied to date. While neutral

tetracene has weak to moderate bands between 1700 and 900

cm- _ (the CC stretching and CH in-plane bending regions) and

two very strong bands at about 895 and 740 cm- _ (out-of-plane

CH bends), the cation band intensity pattern is just the opposite,

with the bands in the CC stretching and CH out-of-plane bending

region dominating. Interestingly, the strongest cation bands are

at 1478 and 1358 cm -t, frequencies that lie between the

strongest interstellar emission features which fall at about 1613

and 1300 cm -I. Other strong tetracene cation bands are at

1543.3 and 1178.5 cm -1.

Only one cation band, that at 929.4 cm -_, has been detected

which may be associated with a CH out-of-plane bending mode

of the tetracene cation. This molecule has two rings with four

adjacent H atoms and two with two nonadjacent H's. It is

reasonable to expect that the band at 929.4 cm-I arises from

the out-of-plane bending vibration of the nonadjacent H's.

Similar to the results found for many of the PAH cations

previously, the mode is blue-shifted by _30 cm -1 from its

frequency in the neutral molecule (895 cm-t). As such, the

band does not fall in the range classically associated with

nonadjacent hydrogens, but several cm -t beyond the high-

frequency limit. This is consistent with previous results which

have indicated that the force field for the cation is quite different

from that of the neutral. Based on the measured upper limit of

11% ionization and using an argument analogous to that

presented for the anthracene cation, the nonadjacent CH out-

of-plane mode of the tetracene cation is suppressed by a factor
of 11 from its value in the neutral molecule.

The Pentacene Cation, C22H14 +. The mid-infrared absorption

spectrum of the pentacene cation is shown in Figure 6. The

cation band frequencies and relative intensities are listed in Table

1. The evolution of the bands assigned to C20H12- with Ly-o.

photolysis is plotted in Figure 7.
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Figure 7. Growth of the pentacene cation integrated photoproduct band
areas (cm- _) as a function of photolysis time. The behavior of the 748.5,

1232.8, 1339.3, 1384.0, and 1531.7 cm -_ bands is not shown to preserve
clarity. They follow the same pattern as given here.

As with tetracene, the cation spectrum does not resemble that

of the neutral species at all. The moderately strong cation bands

detected all lie between about 1500 and 1170 cm -t, with one

strong absorption at 1395.5 cm-L In contrast, the strongest

bands in the neutral molecule occur at about 900 and 732 cm- _,

and the moderately intense bands are evenly distributed over a

much wider range--between 2000 and 500 cm -_. Both the

anthracene and tetracene cations displayed a strong CH in-plane

bending feature near 1180 cm -_. If, as suggested earlier, the

polyacene geometry is conducive to strong activity in this mode,

such a feature would be expected in the spectrum of the

pentacene cation as well. Indeed, the pentacene cation does

have a feature falling at 1174.5 cm -I with a relative intensity
of 0.42.

In addition to the 1174.5 cm- _ band and other weak features

detected in the CH in-plane bending regions, several weak

features also appear in the CH out-of-plane bending region.

Pentacene contains two rings with quadruply adjacent H atoms

and three with two nonadjacent hydrogen atoms. The out-of-

plane bending features of neutral pentacene appear at 900, 824,

and 731 cm -*. The cation exhibits bands at 933.9, 862.0, and

740.8 cm -_. The latter two bands lie in the CH out-of-plane

bending regions classically associated with respectively non-

adjacent and quadruply adjacent H atoms on neutral aromatic

hydrocarbons. On the other hand, the 933.9 cm -t cation band

lies 10-20 cm-t beyond the upper limit to the frequency range

normally attributed to nonadjacent hydrogens. Nevertheless,

we attribute this to an out-of-plane bend of the nonadjacent

hydrogens in the pentacene cation both because it is about I00

cm -_ below the lowest frequencies normally attributed to a CH-

in-plane bend and because its position, integrated intensity, and
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frequency shift from the corresponding neutral band (_30 cm -1

to higher frequency) are all consistent with those of the

nonadjacent CH out-of-plane bends in the other polyacene
cations.

If the 933.9 and 748.5 cm -_ bands correspond respectively

to the 900 and 731 cm -1 CH out-of-plane bending features of

neutral pentacene, we estimate (on the basis of the measured

upper limit ionization efficiency of 12%) that their intensities

are suppressed relative to their value for the neutral molecule

by a factor of 3.5, a value entirely consistent with those of the

other polyacenes. On the other hand, the behavior of the 862.0
cm -I band is anomalous. If the 862.0 cm -1 cation band

corresponds to the 824 cm -I neutral band, we find that its

intensity is suppressed by a factor of 20. While suppression

by this magnitude is not unprecedented for a CH out-of-plane

mode (the CH out-of-plane bend in the naphthalene cation is

suppressed by a factor of 18), it is certainly one of the most
extreme cases observed to date and conflicts with the much more

modest value (3.5) observed for the other out-of-plane CH bends

in the molecule.

Again, if these assignments to CH out-of-plane bends are

correct, and important cation bands have not been missed due

to screening by neutral species, the force field for the cation is

sufficiently different from that of the neutral that these out-of-

plane motions are not only reduced dramatically in intensity,

but that the bond strengths and interactions are altered as well.

The Pentacene Anion, C22Hl4 +. The photolytic behavior of

matrix-isolated pentacene is unique from that of other PAHs

investigated previously in one very important respect. The

spectra of photolyzed Ar/pentacene samples reproducibly display

a family of 15 additional bands whose strongest features appear

with an intensity equal to or even surpassing that of the strongest

cation features. The most prominent members of this family,

with relative intensities listed in parentheses, fall at 712.7

(0.0439), 844.8 (0.0668), 1158.8 (0.196), 1218.8 (0.207), 1349.2

(0.679), 1355.5 (0.153), 1372.8 (1.00), 1524.3 (0.0275), 1539.6

(0.0903), and 1549.5 (0.115) cm -1. Most of these bands are

shown in Figure 6. However, just as reproducibly, the spectra

of photolyzed Ar/CCldpentacene samples fail to show any trace

of these features despite the enhancement that is observed in

the cation bands. Furthermore, it is perhaps suggestive that a

number of these features seem paired with cation features (e.g.,

1218.8, 1349.2, and 1372.8 cm-t), appearing consistently with

similar intensity and _20 cm -1 lower in frequency. We believe

that the observed behavior of these bands is consistent with their

originating from the anion of pentacene. In experiments which

do not involve an electron acceptor, the neutral pentacene

molecules themselves accept the electrons generated by pho-

tolysis, forming the anion of the molecule. For those experi-

ments which do employ an electron acceptor, CC14 is present

in the matrix at a much higher concentration than the PAIl and

presumably scavenges the free electrons preventing anion

formation. The fact that pentacene has the highest electron

affinity ('--1-1.5 eV) of any of the PAHs which have been

studied to date (typically EA _0.5 eV) is also consistent with

this scenario. If this interpretation is indeed correct, it indicates

that there is a distinct electron affinity threshold between ,--0.5

and 1.0 eV for the formation of matrix-isolated anions.

Molecular species which fall below this limit may not be

observable in their anionic form while isolated in matrices.

Further investigation of this phenomenon will be necessary to

fully understand the observations.

It should be noted that the production of matrix-isolated

anions is by no means unprecedented. The application of

electron spin resonance (ESR) spectrometry to the study of

Hudgins and Allamandola

TABLE 2: Near-Infrared Frequencies and Relative
Intensities of the Polyacene Cations through Pentacene

naphthflene anthracene tetracene penmcene

v(cm -t) l_t v(cm -I) l_l v(cm -t) l,,t v(cm-') In,

14805 1.00 13832 1.00 11514 1.00 8750.0 0.018
11897 0.761 10149 0.133
12472 0.130 10472 1.00
12904 0.034 10642 0.028
13055 0.064 10733 0.042
13404 0.301 11366 0.036

11871 0.374
12129 0.011

matrix-isolated anions was pioneered more than 20 years ago 21

and has been applied in many areas. 22 The fact that those

previous studies have involved species with electron affinities

generally in the 2-4 eV range and that the sensitivity of ESR

spectrometry to radical anions far surpasses that of infrared

spectroscopy does not conflict with the suggestion that the

spectrum of the pentacene radical anion may be observed in

our experiments.

B. Near-Infrared Spectroscopy. The band frequencies,

areas, and relative intensities listed in Table 2 for the near-IR

spectra were measured on the same matrices for which the mid-

IR bands listed in Table 1 were measured. An interesting trend

emerges in the ratio of the strongest near-infrared cation band

to the strongest mid-infrared cation band as we move across

the polyacene family from its smallest to its largest members.

The ratio for the naphthalene cation has been reported previously

as F(I(14805)11(1218) = 88) °.ll The ratio for the anthracene

cation is slightly smaller, (1(13832)/1(1341) = 78. For the larger

members of the polyacene family, however, the ratio is

dramatically reduced. For tetracene (1(11514)11(1358) = 29,

and for pentacene it is only (1(10472)11(1396) = 13. We believe

that this decrease is due primarily to the remarkable strength of

the mid-infrared bands of tetracene and pentacene cations, rather

than unusually small near-infrared, elecffonic band strengths.

Despite having ion yield upper limits similar to those found

with many other PAHs (_10%), the tetracene and pentacene

cation bands are far and away the most intense features observed

for any of the PAH cations which have been studied in our

laboratory. In view of the importance of absolute integrated

absorbance values, and the uncertainties in the PAH cation

literature concerning absorbance values, we are developing an

independant method to determine this quantity for PAH cations.

The results of these experiments will be reported separately.

The near-infrared data are presented on an individual basis

below.

The Naphthalene Cation,C loHs+. The near-infraredspectrum

of the naphthalenecationisolatedin an argon matrix isshown

elsewhcre.1L23.24The frequencyof the strongestband islisted
in Table 2.

The Anthracene Cation, C14H to+. The near-infrared spectrum

of the anthracene cation is given in ref 12 and 23. The

frequency of the strongest band is listed in Table 2. The near-

infrared spectrum of the antliracene cation isolated in an argon

matrix has been discussed by Andrews et al.25 and Szczepanski
et al._2

The Tetracene Cation, CIsHj2 +. The near-infrared spectrum

of the tetracene cation is shown in Figure 8 with frequencies

and relative intensities listed in Table 2. The near-infrared

spectrum of the tetracene cation isolated in argon has been

discussed by Andrews et al. 25

The Pentacene Cation, C22HI4 +. The near-infrared spectrdm

of the pentacene cation is shown in Figure 9 with frequencies
and relative intensities listed in Table 2.
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Figure 8. Near-infrared spectrum of the matrix isolated tetracene
cation. This is of the same sample measured in the mid-infrared and

shown in Figure 4 (argon matrix. 10 K).
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Figure 9. Near-infrared spectrum of the matrix isolated pentacene
cation. This is of the same sample measured in the mid-infrared and
shown in Figure 6 (argon matrix. 10 K).

V. Astrophysical Implications

The general spectral properties of the polyacenes reported

here are consistent with the results of previous studies on other

PAH cations which showed the following: (i) The intensity of

the bands in the 1600-1200 cm -_ range, the CC stretching and

CH in-plane bending region of PAH cations, are typically 2-5

times greater than that of the CH out-of-plane bending modes

which fall between 900 and 550 cm -I. (ii) The CH out-of-

plane bending mode of the cations is typically 5-20 times

weaker than the out-of-plane bending mode of the neutrals. (iii)

The bands in the CC stretching and CH in-plane bending region

are generally an order of magnitude stronger than that for the

corresponding transitions in neutral PAHs. This behavior

confu'ms that predicted theoretically by Defrees et al. 15 and

Pauzat et al._6 for PAIl cations and supports the interstellar PAH
model.

The most intense bands of all PAIl cations studied to date

fall within the envelopes of the most intense interstellar features,

namely, those at 1610 and 1310 cm -_ (6.2 and 7.7/am). The
observation that the most intense interstellar emission features

fall in the PAH CC stretching and CH in-plane-bending regions

is completely consistent with the composite emission spectrum

expected from a mixture dominated by free, ionized, small

PAils. The strongest absorptions in the polyacenes anthracene,

tetracene, and pentacene fall between about 1500 and 1340 cm -_

J. Phys. Chem., Vol. 99, No. 22, 1995 8985

(6.7 and 7.5/am) and near 1180 cm -l (8.5/am), regions of only

moderately intense interstellar emission between the strongest

interstellar emission bands. These very strong polyacene bands

also tend to fall in gaps in the spectra of the other PAIl cations

studied to date, suggesting that while PAHs with polyacene

structures may contribute to portions of the interstellar emission

spectra, they are not dominant members of the interstellar PAH

family.

Vl. Conclusions

The near- and mid-infrared spectra of the anthracene, tet-

racene, and pentacene cations isolated in argon matrices are

presented. The mid-infrared spectrum of the argon matrix

isolated pentacene anion is also reported. Ions were generated

by in-situ photolysis.

The strongest mid-infrared absorption bands of these PAH
cations fall between 1600 and about 1200 cm -I and near 1180

cm -t, the CC stretching and CH in-plane bending region. These

tend to be 2-5 times more intense than the bands due to the

CH out-of-plane bending modes. The strongest bands tend to

fall in groupings between 1500 and 1300 cm -_. On the other

hand, the CH out-of plane bending modes in the cation are

strongly depressed with respect to the neutrals. Only weak new

bands grow in the normally very strong CH out-of-plane bending

region between about 900 and 600 cm -l. The extent to which

these out-of-plane motions are reduced in intensity and the bond

strengths and interactions are altered is far more than would be

expected on first principles by the removal of one electron from

the zr system. Similarly, as has been the case with previous

PAil cations studied, no new features were found in the CH

stretch region between 3200 and 2900 cm -t, implying that the

CH stretching modes of the cation are comparable to or weaker

than for the neutral species. Theory predicts them to be
weaker, t5

The strongest cation bands coincide with CC stretching and

CH in-plane bending modes, behavior just opposite that for the

neutral species. This is important for the interpretation of the

astronomical emission spectra which are dominated by very

intense features in this region. Since most PAHs in the emission

zones would be ionized, this apparent spectral characteristic of

PAH cations gives strong support to the interstellar PAH

hypothesis. The strongest absorptions in the polyacenes an-

thracene, tetracene, and pentacene tend to group around 1400

cm- t (between about 1340 and 1500 cm- i) and near 1180 cm- i

regions of only moderately intense interstellar emission between

the strongest interstellar emission bands. These very strong

polyacene bands also tend to fall in gaps in the spectra of the

other PAH cations studied to date, suggesting that while PAHs

with polyacene structures may contribute to portions of the

interstellar emission spectra, they are not dominant members

of the interstellar PAH family.
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Note Added in Proof. Recent unpublished calculations by

Langhoff on the mid-infrared spectra of PAH cations and anions

show good agreement with the experimental frequencies and

most relative intensities reported here. However, the intensity

ratio for the strongest bands in the pentacene cation are reversed
in the calculations.
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